How to implement LDA in Spark and get the topic distributions of new documents ?

```scala 
import org.apache.spark.rdd._
import org.apache.spark.mllib.clustering.{LDA, DistributedLDAModel, LocalLDAModel}
import org.apache.spark.mllib.linalg.{Vector, Vectors}
import scala.collection.mutable

//create training document set
val input = Seq("this is a document","this could be another document","these are training, not tests", "here is the final file (document)")
val corpus: RDD[Array[String]] = sc.parallelize(input.map{ 
  doc => doc.split("\\s")
})

val termCounts: Array[(String, Long)] = corpus.flatMap(_.map(_ -> 1L)).reduceByKey(_ + _).collect().sortBy(-_._2)

val vocabArray: Array[String] = termCounts.takeRight(termCounts.size).map(_._1)
val vocab: Map[String, Int] = vocabArray.zipWithIndex.toMap

// Convert training documents into term count vectors
val documents: RDD[(Long, Vector)] =
    corpus.zipWithIndex.map { case (tokens, id) =>
        val counts = new mutable.HashMap[Int, Double]()
        tokens.foreach { term =>
            if (vocab.contains(term)) {
                val idx = vocab(term)
                counts(idx) = counts.getOrElse(idx, 0.0) + 1.0
            }
        }
        (id, Vectors.sparse(vocab.size, counts.toSeq))
    }
// Set LDA parameters and create model
val numTopics = 10
val ldaModel: DistributedLDAModel = new LDA().setK(numTopics).setMaxIterations(20).run(documents).asInstanceOf[DistributedLDAModel]
val localLDAModel: LocalLDAModel = ldaModel.toLocal

//create test input, convert to term count, and get its topic distribution
val test_input = Seq("this is my test document")
val test_document:RDD[(Long,Vector)] = sc.parallelize(test_input.map(doc=>doc.split("\\s"))).zipWithIndex.map{ case (tokens, id) =>
    val counts = new mutable.HashMap[Int, Double]()
    tokens.foreach { term =>
    if (vocab.contains(term)) {
        val idx = vocab(term)
        counts(idx) = counts.getOrElse(idx, 0.0) + 1.0
        }
    }
    (id, Vectors.sparse(vocab.size, counts.toSeq))
}

val topicDistributions = localLDAModel.topicDistributions(test_document)
println("first topic distribution:"+topicDistributions.first._2.toArray.mkString(", "))
```

Solve More Practice Questions

Artificial Intelligence or AI

How to earn money online?

Why is your Adsense account still waiting approval?